↳ Prolog
↳ PrologToPiTRSProof
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
LOG_IN_GA(s(X), s(Y)) → HALF_IN_GA(s(X), Z)
HALF_IN_GA(s(s(X)), s(Y)) → U1_GA(X, Y, half_in_ga(X, Y))
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
U2_GA(X, Y, half_out_ga(s(X), Z)) → U3_GA(X, Y, log_in_ga(Z, Y))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
LOG_IN_GA(s(X), s(Y)) → HALF_IN_GA(s(X), Z)
HALF_IN_GA(s(s(X)), s(Y)) → U1_GA(X, Y, half_in_ga(X, Y))
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
U2_GA(X, Y, half_out_ga(s(X), Z)) → U3_GA(X, Y, log_in_ga(Z, Y))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
HALF_IN_GA(s(s(X))) → HALF_IN_GA(X)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
half_in_ga(0, 0) → half_out_ga(0, 0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
U2_GA(half_out_ga(Z)) → LOG_IN_GA(Z)
LOG_IN_GA(s(X)) → U2_GA(half_in_ga(s(X)))
half_in_ga(s(0)) → half_out_ga(0)
half_in_ga(s(s(X))) → U1_ga(half_in_ga(X))
U1_ga(half_out_ga(Y)) → half_out_ga(s(Y))
half_in_ga(0) → half_out_ga(0)
half_in_ga(x0)
U1_ga(x0)
half_in_ga(s(0)) → half_out_ga(0)
POL(0) = 2
POL(LOG_IN_GA(x1)) = x1
POL(U1_ga(x1)) = 2·x1
POL(U2_GA(x1)) = x1
POL(half_in_ga(x1)) = x1
POL(half_out_ga(x1)) = x1
POL(s(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
U2_GA(half_out_ga(Z)) → LOG_IN_GA(Z)
LOG_IN_GA(s(X)) → U2_GA(half_in_ga(s(X)))
half_in_ga(s(s(X))) → U1_ga(half_in_ga(X))
U1_ga(half_out_ga(Y)) → half_out_ga(s(Y))
half_in_ga(0) → half_out_ga(0)
half_in_ga(x0)
U1_ga(x0)
LOG_IN_GA(s(X)) → U2_GA(half_in_ga(s(X)))
half_in_ga(s(s(X))) → U1_ga(half_in_ga(X))
POL(0) = 0
POL(LOG_IN_GA(x1)) = 2·x1
POL(U1_ga(x1)) = 2 + 2·x1
POL(U2_GA(x1)) = x1
POL(half_in_ga(x1)) = x1
POL(half_out_ga(x1)) = 2·x1
POL(s(x1)) = 1 + 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
U2_GA(half_out_ga(Z)) → LOG_IN_GA(Z)
U1_ga(half_out_ga(Y)) → half_out_ga(s(Y))
half_in_ga(0) → half_out_ga(0)
half_in_ga(x0)
U1_ga(x0)